integrate¶
- torch_sim.runners.integrate(system, model, *, integrator, n_steps, temperature, timestep, trajectory_reporter=None, autobatcher=False, pbar=False, init_kwargs=None, **integrator_kwargs)[source]¶
Simulate a system using a model and integrator.
- Parameters:
system (
StateLike) – Input system to simulatemodel (
ModelInterface) – Neural network model moduleintegrator (
Integrator | tuple) – Either a key from Integrator or a tuple of (init_func, step_func) functions.n_steps (
int) – Number of integration steps. If resuming from a trajectory, this is the number of additional steps to run.temperature (
float | ArrayLike) – Temperature or array of temperatures for each step or system: Float: used for all steps and systems 1D array of length n_steps: used for each step 1D array of length n_systems: used for each system 2D array of shape (n_steps, n_systems): used for each step and system.timestep (
float) – Integration time steptrajectory_reporter (
TrajectoryReporter | dict | None) – Optional reporter for tracking trajectory. If a dict, will be passed to the TrajectoryReporter constructor.autobatcher (
BinningAutoBatcher | bool) – Optional autobatcher to usepbar (
bool | dict[str, Any], optional) – Show a progress bar. Only works with an autobatcher in interactive shell. If a dict is given, it’s passed to tqdm as kwargs.init_kwargs (
dict[str, Any], optional) – Additional keyword arguments for integrator init function.**integrator_kwargs – Additional keyword arguments for integrator init function
- Returns:
Final state after integration
- Return type:
T