torch_sim.runnersΒΆ

High level runners for atomistic simulations.

This module provides functions for running molecular dynamics simulations and geometry optimizations using various models and integrators. It includes utilities for converting between different atomistic representations and handling simulation state.

Functions

generate_energy_convergence_fn

Generate an energy-based convergence function for the convergence_fn argument of the optimize function.

generate_force_convergence_fn

Generate a force-based convergence function for the convergence_fn argument of the optimize function.

integrate

Simulate a system using a model and integrator.

optimize

Optimize a system using a model and optimizer.

static

Run single point calculations on a batch of systems.

Classes

INTEGRATOR_REGISTRY

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2).

OPTIM_REGISTRY

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2).