torch_sim.optimizersΒΆ

Optimizers for geometry relaxations.

This module provides optimization algorithms for atomic structures in a batched format, enabling efficient relaxation of multiple atomic structures simultaneously. It uses a filter-based design where cell optimization constraints and parameterizations are handled by separate filter functions.

Classes

OPTIM_REGISTRY

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2).

Optimizer

Enumeration of the optimization flavors.

ase_fire_key

str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

vv_fire_key

str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Modules

cell_filters

Cell filters for optimization algorithms.

fire

FIRE (Fast Inertial Relaxation Engine) optimizer implementation.

gradient_descent

Gradient descent optimizer implementation.

state

Optimizer state classes.