torch_sim.optimizersΒΆ
Optimizers for geometry relaxations.
This module provides optimization algorithms for atomic structures in a batched format, enabling efficient relaxation of multiple atomic structures simultaneously. It uses a filter-based design where cell optimization constraints and parameterizations are handled by separate filter functions.
Classes
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2). |
|
Enumeration of the optimization flavors. |
|
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str |
|
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str |
Modules
Cell filters for optimization algorithms. |
|
FIRE (Fast Inertial Relaxation Engine) optimizer implementation. |
|
Gradient descent optimizer implementation. |
|
Optimizer state classes. |